Powered by MathJax

Friday, July 4, 2014

Question of the week #8

   Given that
$$
siny+cosy = x
$$
find the first $\frac{dy}{dx}$ and the second derivative $\frac{d^{2}y}{dx^{2}}$ as functions of x.

   Hint: It deserves to be persistent (and to use some trigonometric identities as well) to get rid of the $y$ !


Thursday, July 3, 2014

Question of the week #7: the answer

$\bullet$ Last week's exercise was the following:

Exercise
(a). Find the general solution of the following differential equation:
$$\frac{dy}{dx}lnx+\frac{y}{x}= cotx$$
(b). Find also a special solution coming through $(0,1)$.


$\bullet$ In today's  post let us see how this could have been worked out: 

Solution:
(a). Let us begin by noticing that $(lnx)'=\frac{1}{x}$. Thus we have that:

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \  \ \ \ \ \ \  \frac{dy}{dx}lnx+\frac{y}{x}= cotx  \ \ \ \Leftrightarrow \ \ \  y' lnx + y (lnx)' = cotx \Leftrightarrow$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Leftrightarrow (y lnx)' = \frac{cosx}{sinx} \ \ \ \Leftrightarrow \ \ \ (y lnx)' = \frac{(sinx)'}{sinx}   \Leftrightarrow $

$\ \ \ \ \ \ \  \ \ \ \ \ \ \ \ \ \ \Leftrightarrow  (y lnx)' = \big( ln(sinx) \big)'  \ \ \ \Leftrightarrow \ \ \ y lnx = ln(sinx) + c$

$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \Leftrightarrow lnx^{y} = ln(sinx)+c \ \ \ \Leftrightarrow \ \ \ x^{y} = d sinx$

where $x > 0$ and both $c$ and $d=e^{c}$ are integration constants.
   So the general solution consists of all the functions defined (in implicit form) by the parametric family of equations:
\begin{equation} \label{implgensol}
x^{y} = d sinx
\end{equation}
where $x > 0$.
(b). In order to determine the special solution coming through $(0,1)$ we have to substitute $x=0$, $y=1$ in the general solution \eqref{implgensol}, getting:  $ \ \ \ 0=d sin0$.
   Thus, all solutions \eqref{implgensol}, for any $d \in \mathbb{R}$ are coming through $(0,1)$.